Predictions for small domains are our primary interest.
Standard survey estimators are often unreliable given small sample sizes. (Rao, Molina, 2015)
Use model to incorporate auxiliary information (known for the whole population).
Predictions for small domains are our primary interest.
Standard survey estimators are often unreliable given small sample sizes. (Rao, Molina, 2015)
Use model to incorporate auxiliary information (known for the whole population).
Data motivation (CEAP RUSLE2)
skewed data with heavy zeros
potential correlation between the positive part and the binary part
area mean, quantiles around 15% zeros skewed income data, wine production
Suppose response variable y∗ij,i=1,..,D;j=1,..,Ni satisfies y∗ij=yijδij
Positive part: log(yij)=β0+z′1,ijβ1+ui+eij where eiji.i.d∼N(0,σ2e).
Binary part: Pr(δij=1)=pij, g(pij)=α0+z′2,ijα1+bi where g(⋅) is the parametric link function to be specified.
Lognormal extension
Mathematically tractable and computationally simple.
SAE lognormal model - Berg and Chandra (2013).
SAE zero-inflated lognormal - Lyu (2018).
Correlated random effects
(uibi)iid∼BVN(0,Σub),Σub=(σ2uρσuσbρσuσbσ2b)
"plug-in" approach of Chandra, Chambers (2016) => implicitly assume independence
Bayesian approach of Pfeffermann et al (2018) => requires specifying prior distributions
linear mixed model used for the positive part
The minimum mean squared error (MMSE) predictor of ζi=1Ni∑Nij=1y∗ij is ^ζMMSEi=1Ni{∑j∈siy∗ij+∑j∈¯si^y∗MMSEij} where ^y∗MMSEij=Eθ(y∗ij|y∗si)
Let ^θ be a consistent estimator of model parameter θ. ^ζEBi=1Ni{∑j∈siy∗ij+∑j∈¯si^y∗EBij} where ^y∗EBij=^y∗MMSEij(^θ)
We replace the true θ with an estimator to obtain the EB predictor nonsampled units ¯si
ui|bi,y∗si∼N(~μui,~σ2ui) where ~μui=γi¯~ri+(1−γi)[ρσuσbbi],~σ2ui=γiσ2e/~ni and γi=(1−ρ2)σ2u[(1−ρ2)σ2u+σ2e/~ni]−1,~ni=∑j∈siδij, ¯~ri=~n−1i∑j∈siδij{log(yij)−β0−z′1,ijβ1}
Remark: when ρ=0, γi=σ2u/(σ2u+σ2e/~ni), ui|y∗si∼N(γi¯~ri,γiσ2e/~ni).
f(bi|y∗si)∝πsi(bi)ϕ(bi−mi√vi) where ϕ(⋅) is the probability density function of standard normal distribution, πsi(bi)=∏j∈si[pijδij+(1−pij)(1−δij)] and pij(bi)=g−1(α0+α1zij+bi). (mi,vi)=(ρσuσbσ2u+σ2e/~ni¯~ri,1−ρ21−(1−γi)ρ2σ2b). Remark: when ρ=0, (mi,vi)=(0,σ2b).
E(y∗ij|y∗si,θ)=hij(θ)E(pij(bi)η(bi)|y∗si) where hij(θ)=exp(β0+x′ijβ1+γi¯~ri+~σ2ui/2+σ2e/2) and η(bi)=exp((1−γi)ρσu/σbbi).
👉 ^y∗EBij=E(y∗ij|y∗si,^θ)
Remark: The proposed predictor can accommodate any parametrized link (transformation) function for the positive part and the binary part.
Given ρ≠0, how to get a consistent estimator for model parameter θ=(β′,α′,σ2u,σ2b,σ2e,ρ)′? 😣
Given ρ≠0, how to get a consistent estimator for model parameter θ=(β′,α′,σ2u,σ2b,σ2e,ρ)′? 😣
Full likelihood function: Li(θ)=(1−γi)1/2(vi/σ2b)1/2(2πσ2e)~ni/2exp(γi¯~r2i2σ2e/~ni+m2i2vi−∑j~r2ij2σ2e)∫πsi(bi)1√viϕ(bi−mi√vi)dbi Remark:
A good starting value and the gradient vector ∂L/∂θ help optim
find the optimizer much faster. ✌️
Profiling out ρ takes much longer time to find the MLE.
first approach also allows inference for simultaneous confidence interval or hypothesis test
Formally, the MSE of an EB predictor is MSE(^ζEBi)=M1i(θ)+M2i(θ) where M1i(θ)=E(^ζMMSEi−ζi)2=O(1), as D→∞ and M2i(θ)=E(^ζEBi−^ζMMSEi)2=o(1), as D→∞ Recall that ^ζMMSEi=E[ζi|y∗si,θ],^ζEBi=E[ζi|y∗si,^θ]
M2i(θ) results from the parameter estimation process.
So the MSE of the optimal predictor is M1i(θ)=E(E[ζi|y∗si,θ]−ζi)2=E[V(ζi|y∗si,θ)] We propose a One-Step MSE estimator defined by V(ζi|y∗si,^θ)=1N2i∑j∈¯si∑k∈¯si[E{y∗ijy∗ik|y∗si,^θ}−E{y∗ij|y∗si,^θ}E{y∗ik|y∗si,^θ}] where E{y∗ijy∗ik|y∗si}=hijhikexp(~σ2ui)E[pijpikη(2bi)|y∗si],j≠k and E{y∗ijy∗ik|y∗si}=h2ijexp(~σ2ui+σ2e)E[pijη(2bi)|y∗si],j=k
Denote original parameter estimate ^θ, bootstrap population Y∗(b), bootstrap sample y∗(b), parameter estimate ^θ(b)
For b=1,…,B, we obtain Y∗(b)⟶¯y∗(b)Ni y∗(b),^θ⟶^¯y∗(b)MMSENi y∗(b),^θ(b)⟶^¯y∗(b)EBNi
^MSEBooti=B−1∑Bb=1(^¯y∗(b)EBNi−¯y∗(b)Ni)2
^MSESemi-Booti=^M1i+^MBoot2i where a bootstrap estimator of M2i is defined by ^MBoot2i=B−1∑Bb=1(^¯y∗(b)EBNi−^¯y∗(b)MMSENi)2
Number of areas: D=60
Sample rate: (Ni,ni)=(71,5),(143,10),(286,20) for every 20 areas so that (N,n)=(10000,700)
logit
link for the binary part
One-dimensional covariates: zij∼N(4.45,0.055)
β=(−13,2)′,α=(−20,5)′, (σ2u,σ2e,σ2b)=(0.22,1.23,0.52)
ρ∈{−0.9,−0.6,−0.3,0,0.3,0.6,0.9}
Compare the proposed EB predictor with the EB(0) predictor ^ζEBi∣ρ=0
Remark: the EB(0) predictor (Lyu 2018) is based on ^θ0 obtained from fitting the two parts separately
RDMSEi=MSE(^ζEB(0)i)−MSE(^ζEBi)MSE(^ζEBi)
RBMSEi=^MSEi−MSE(^ζi)MSE(^ζi),CIi=^ζi±1.96√^MSEi
Estimating the leading term directly seems to improve the quality of CIs based on "Boot" when B = 100
RUSLE2: sheet and rill erosion from cropland tons/yr
On a cropland grid at a spatial resolution of 56m
logR 💦: log-scale county-level Rainfall factor 👈 NRI
logK 🗻: log-scale erosion factor 👈 Soil Survey
logS 📐: log-scale slope gradient factor 👈 Soil Survey
crop_type 🌱: corn, soybean, sprwht or wtrwht 👈 CDL
Based on the observed information matrix, 95% confidence interval for ρ is (0.67,0.84).
Figure 1. Cartogram of the EB predicted county means of cropland RUSLE2 in South Dakota. Smaller shrinkage indicates smaller coefficient of variance.
Eastern South Dakota: more cropland, more samples, more positive response Two counties have no sample, many counties have less than 5 samples, some county at most 30 samples. mean SE around 0.005
A frequentist approach has been proposed to fit zero-inflated lognormal model with correlated random effects in small area prediction.
When the true correlation deviates far from 0, the EB(0) predictor (Lyu 2018) has moderately larger MSE than the EB predictor (without model mis-specification).
The data analysis of the cropland CEAP RUSLE2 measurements collected in South Dakota shows the model assumptions are reasonable.
Positive part fitted value: marginal 👉 x′ij^β, conditional 👉 x′ij^β+^E[ui|y∗si]
Binary part: Hosmer-Lemeshow test with ^pij=E[pij(bi)|y∗si]
Predictions for small domains are our primary interest.
Standard survey estimators are often unreliable given small sample sizes. (Rao, Molina, 2015)
Use model to incorporate auxiliary information (known for the whole population).
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |