class: center, middle, inverse, title-slide # Empirical Bayes small area prediction ## under a zero-inflated lognormal model with correlated random effects ### Xiaodan Lyu ### Joint work with Dr.Emily Berg ### 04 February 2020 --- ## Basic Setting - Predictions for small domains are our primary interest. + Standard survey estimators are often unreliable given small sample sizes. (Rao, Molina, 2015) + Use <span style="color: blue;">model</span> to incorporate auxiliary information (known for the whole population). -- - Data motivation (CEAP RUSLE2) + skewed data with heavy zeros + potential <span style="color: blue;">correlation</span> between the positive part and the binary part ??? area mean, quantiles around 15% zeros skewed income data, wine production --- ## Data Model Suppose response variable `\({y}_{ij}^*, i=1,..,D;j=1,..,N_i\)` satisfies `$${y}_{ij}^*=y_{ij}\delta_{ij}$$` + <span style="color: blue;">Positive part</span>: `$$\log(y_{ij})=\beta_0+\mathbf{z}'_{1,ij}\boldsymbol{\beta}_1+u_i+e_{ij}$$` where `\(e_{ij} \overset{i.i.d}{\sim} N(0, \sigma^2_e)\)`. + <span style="color: blue;">Binary part</span>: `\(\text{Pr}(\delta_{ij}=1) = p_{ij}\)`, `$$g(p_{ij})=\alpha_0+\mathbf{z}_{2,ij}'\boldsymbol\alpha_1+b_i$$` where `\(g(\cdot)\)` is the parametric link function to be specified. --- ## Data Model - Lognormal extension + Mathematically tractable and computationally simple. + SAE lognormal model - Berg and Chandra (2013). + SAE zero-inflated lognormal - Lyu (2018). - Correlated random effects + `$$\left(\begin{array}{c} u_{i} \\ b_{i}\end{array}\right) \stackrel{iid}{\sim} \mbox{BVN}(\boldsymbol{0}, \boldsymbol{\Sigma}_{ub}), \boldsymbol{\Sigma}_{ub} = \begin{pmatrix}\sigma_u^2 & \color{red}{\rho}\sigma_{u}\sigma_{b}\\\color{red}{\rho}\sigma_{u}\sigma_{b} & \sigma_b^2 \end{pmatrix}$$` + "plug-in" approach of Chandra, Chambers (2016) => implicitly assume independence + Bayesian approach of Pfeffermann et al (2018) => requires specifying prior distributions ??? linear mixed model used for the positive part --- ## Empirical Bayes general The minimum mean squared error (MMSE) predictor of `\(\color{blue}{\zeta_{i} = \frac{1}{N_i}\sum_{j=1}^{N_i}y_{ij}^*}\)` is `$$\hat\zeta_{i}^{\rm{MMSE}}=\frac{1}{N_i}\Big\{\sum_{j \in s_i} y_{ij}^* + \sum_{j \in \bar s_i}\hat{y}_{ij}^{*\rm{MMSE}}\Big\}$$` where `\(\hat{y}_{ij}^{*\rm{MMSE}} = \color{blue}{E_{\theta}(y_{ij}^*|\boldsymbol{y}^*_{s_i})}\)` Let `\(\hat{\boldsymbol \theta}\)` be a consistent estimator of model parameter `\(\boldsymbol \theta\)`. `$$\hat \zeta_{i}^{\rm{EB}}=\frac{1}{N_i}\Big\{\sum_{j \in s_i} y_{ij}^* + \sum_{j \in \bar s_i} \hat y_{ij}^{*\rm{EB}} \Big\}$$` where `\(\hat y_{ij}^{*\rm{EB}}=\hat{y}_{ij}^{*\rm{MMSE}}(\color{red}{\hat{\boldsymbol\theta}})\)` ??? We replace the true `\(\boldsymbol \theta\)` with an estimator to obtain the EB predictor nonsampled units `\(\bar s_i\)` --- ## Conditional Distribution #### Result 1: `$$u_i|\color{red}{b_i}, \boldsymbol{y}^*_{s_i} \sim N(\tilde\mu_{u_i}, \tilde{\sigma}^2_{u_i})$$` where `$$\tilde\mu_{u_i} = \gamma_i\bar{\tilde{r}}_i+(1-\gamma_i)\Big[\rho\frac{\sigma_u}{\sigma_b}{b_i}\Big], \tilde\sigma_{u_i}^2 = \gamma_i{\sigma_e^2}/{\tilde{n}_i}$$` and `\(\color{blue}{\gamma_i = (1-\rho^2)\sigma_u^2 [(1-\rho^2)\sigma_u^2+\sigma_e^2/\tilde{n}_i]^{-1}}, \tilde{n}_i=\sum_{j\in s_i}\delta_{ij}\)`, `$$\bar{\tilde{r}}_i= \tilde{n}_i^{-1}\sum_{j\in s_i} \delta_{ij}\{\log(y_{ij})-\beta_0-\boldsymbol{z}_{1,ij}'\boldsymbol\beta_1\}$$` **Remark**: when `\(\rho=0\)`, `\(\gamma_i = {\sigma_u^2}/({\sigma_u^2+\sigma_e^2/\tilde{n}_i})\)`, `\(u_i|\boldsymbol{y}^*_{s_i}\sim N(\gamma_i\bar{\tilde{r}}_i, \gamma_i{\sigma_e^2}/{\tilde{n}_i})\)`. --- ## Conditional Distribution (Cont'd) #### Result 2: `$$f(b_i|\boldsymbol{y}_{s_i}^*) \propto \pi_{s_i}(b_i)\phi(\frac{b_i-m_i}{\sqrt{v_i}})$$` where `\(\phi(\cdot)\)` is the probability density function of standard normal distribution, `$$\pi_{s_i}(b_i)=\prod_{j \in s_i}\Big [ p_{ij}\delta_{ij}+(1-p_{ij})(1-\delta_{ij})\Big ]$$` and `\(p_{ij}(b_i)=g^{-1}(\alpha_0+\boldsymbol\alpha_1\mathbf z_{ij}+b_i)\)`. `$$\color{blue}{(m_i, v_{i}) =(\frac{\rho\sigma_u\sigma_b}{\sigma_u^2+\sigma_e^2/\tilde{n}_i}\bar{\tilde{r}}_i, \frac{1-\rho^2}{1-(1-\gamma_i)\rho^2}\sigma_b^2)}.$$` **Remark**: when `\(\rho=0\)`, `\((m_i, v_{i})=(0, \sigma_b^2)\)`. --- ## Conditional Distribution (Cont'd) #### Result 3: `$$E(y_{ij}^*|\boldsymbol{y}_{s_i}^*, \boldsymbol\theta) = h_{ij}(\boldsymbol\theta)E(p_{ij}(b_i)\color{blue}{\eta(b_i)}|\boldsymbol{y}_{s_i}^*)$$` where `\(h_{ij}(\boldsymbol\theta) = \exp(\beta_0+x_{ij}'\beta_1+{\gamma_i}\bar{\tilde{r}}_i + \tilde{\sigma}_{u_i}^2/2+\sigma_e^2/2)\)` and `\(\eta(b_i)=\exp((1-\gamma_i){\rho}\sigma_u/\sigma_b b_i).\)` <br> 👉 `\(\hat{y}_{ij}^{*\rm{EB}} = E(y_{ij}^*|\boldsymbol{y}_{s_i}^*, \hat{\boldsymbol\theta})\)` <br> **Remark**: The proposed predictor can accommodate any parametrized link (transformation) function for the positive part and the binary part. --- ## Parameter Estimation Given `\(\rho \neq 0\)`, how to get a consistent estimator for model parameter `\(\boldsymbol\theta = (\boldsymbol\beta', \boldsymbol\alpha', \sigma^2_u, \sigma^2_b, \sigma^2_e, \rho)'\)`? 😣 -- Full likelihood function: `$$\begin{eqnarray}L_i(\boldsymbol\theta) &=& \frac{(1-\gamma_i)^{1/2}(v_i/\sigma_b^2)^{1/2}}{(2\pi\sigma_e^2)^{\tilde{n}_i/2}}\exp(\frac{\gamma_i\bar{\tilde{r}}_i^2}{2\sigma_e^2/\tilde{n}_i} + \frac{m_i^2}{2v_i}-\frac{\sum_j\tilde{r}_{ij}^2}{2\sigma_e^2}) \\ && \int \pi_{s_i}(b_i)\frac{1}{\sqrt{v_i}}\phi(\frac{b_i-m_i}{\sqrt{v_i}})\mathrm{d}b_i\end{eqnarray}$$` **Remark**: + A good starting value and the gradient vector `\(\partial L/\partial\boldsymbol\theta\)` help `optim` find the optimizer much faster. ✌️ + Profiling out `\(\rho\)` takes much longer time to find the MLE. ??? first approach also allows inference for simultaneous confidence interval or hypothesis test --- ## MSE Estimator Formally, the MSE of an EB predictor is `$$\rm{MSE}(\hat\zeta_{i}^{EB}) = M_{1i}(\boldsymbol\theta) + M_{2i}(\boldsymbol\theta)$$` where `$$M_{1i}(\boldsymbol\theta)=E(\hat\zeta_{i}^{\rm{MMSE}}-\zeta_{i})^2 = O(1), \text{ as } D \to \infty$$` and `$$M_{2i}(\boldsymbol\theta)=E(\hat\zeta_{i}^{\rm{EB}}-\hat\zeta_{i}^{\rm{MMSE}})^2 = o(1), \text{ as } D \to \infty$$` Recall that `$$\hat\zeta_{i}^{\rm{MMSE}} = E[\zeta_{i}|\boldsymbol{y}_{s_i}^*, \boldsymbol{\theta}], \hat\zeta_{i}^{\rm{EB}} = E[\zeta_{i}|\boldsymbol{y}_{s_i}^*, \hat{\boldsymbol{\theta}}]$$` ??? `\(M_{2i}(\boldsymbol\theta)\)` results from the parameter estimation process. --- ## MSE Estimator (Cont'd) So the MSE of the optimal predictor is `$$M_{1i}(\boldsymbol\theta)=E(E[\zeta_{i}|\boldsymbol{y}_{s_i}^*, \boldsymbol\theta] - \zeta_{i})^2=E[V(\zeta_{i}|\boldsymbol{y}_{s_i}^*, \boldsymbol\theta)]$$` We propose a **One-Step** MSE estimator defined by `$$V(\zeta_{i}|\boldsymbol{y}_{s_i}^*, \color{red}{\hat{\boldsymbol\theta}}) = \frac{1}{N_i^2}\sum_{j \in \bar{s}_i}\sum_{k \in \bar{s}_i}\Big[E\{y^*_{ij}y^*_{ik}|\boldsymbol{y}_{s_i}^*, \hat{\boldsymbol\theta}\} - E\{y^*_{ij}|\boldsymbol{y}_{s_i}^*, \hat{\boldsymbol\theta}\}E\{y^*_{ik}|\boldsymbol{y}_{s_i}^*, \hat{\boldsymbol\theta}\}\Big]$$` where `$$E\{y^*_{ij}y^*_{ik}|\boldsymbol{y}_{s_i}^*\} = h_{ij}h_{ik}\exp(\tilde{\sigma}_{u_i}^2)E[p_{ij}p_{ik}\color{blue}{\eta(2b_i)}|\boldsymbol{y}_{s_i}^*],j \neq k$$` and `$$E\{y^*_{ij}y^*_{ik}|\boldsymbol{y}_{s_i}^*\} = h_{ij}^2\exp(\tilde{\sigma}_{u_i}^2+\sigma_e^2)E[{p_{ij}}\color{blue}{\eta(2b_i)}|\boldsymbol{y}_{s_i}^*],j = k$$` --- ## Alternate MSE Estimators - Denote original parameter estimate `\(\hat{\boldsymbol{\theta}}\)`, bootstrap population `\(\boldsymbol Y^{*(b)}\)`, bootstrap sample `\(\boldsymbol y^{*(b)}\)`, parameter estimate `\(\hat{\boldsymbol{\theta}}^{(b)}\)` - For `\(b = 1,\ldots, B\)`, we obtain `$$\boldsymbol Y^{*(b)} \longrightarrow \bar{y}_{N_{i}}^{*(b)}$$` `$$\boldsymbol{y}^{*(b)}, \hat{\boldsymbol{\theta}} \longrightarrow \hat{\bar{y}}_{N_i}^{*(b)\rm{MMSE}}$$` `$$\boldsymbol{y}^{*(b)}, \hat{\boldsymbol{\theta}}^{(b)} \longrightarrow \hat{\bar{y}}_{N_i}^{*(b)\rm{EB}}$$` 1. `\(\hat{\mbox{MSE}}_{i}^{\color{blue}{\mbox{Boot}}} = B^{-1}\sum_{b = 1}^{B}(\hat{\bar{y}}_{N_{i}}^{*(b)\mbox{EB}} - \bar{y}_{N_{i}}^{*(b)})^{2}\)` 1. `\(\hat{\mbox{MSE}}_{i}^{\color{blue}{\mbox{Semi-Boot}}} = \hat{M}_{1i} + \hat{M}_{2i}^{\mbox{Boot}}\)` where a bootstrap estimator of `\(M_{2i}\)` is defined by `\(\hat{M}_{2i}^{\mbox{Boot}} = B^{-1}\sum_{b = 1}^{B}( \hat{\bar{y}}_{N_{i}}^{*(b)\mbox{EB}} - \hat{\bar{y}}_{N_{i}}^{*(b)\mbox{MMSE}})^{2}\)` --- ## Simulation Setting - Number of areas: `\(D = 60\)` - Sample rate: `\((N_i, n_i) = (71, 5), (143, 10), (286, 20)\)` for every 20 areas so that `\((N, n)=(10000, 700)\)` - `logit` link for the binary part - One-dimensional covariates: `\(z_{ij}\sim N(4.45, 0.055)\)` - `\(\boldsymbol\beta = (-13, 2)', \boldsymbol\alpha = (-20, 5)'\)`, `\((\sigma_u^2, \sigma_e^2, \sigma_b^2) = (0.22, 1.23, 0.52)\)` - `\(\rho \in \{-0.9, -0.6, -0.3, 0, 0.3, 0.6, 0.9\}\)` - Compare the proposed EB predictor with the EB(0) predictor `\(\hat \zeta_{i}^{\rm{EB}}\mid_{\rho=0}\)` **Remark**: the EB(0) predictor (Lyu 2018) is based on `\(\hat{\boldsymbol\theta}_0\)` obtained from fitting the two parts separately --- ## Simulation Results `$$\rm{RDMSE}_i = \frac{\rm{MSE}(\hat\zeta_i^{\rm{EB(0)}}) - \rm{MSE}(\hat\zeta_i^{\rm{EB}})}{\rm{MSE}(\hat\zeta_i^{\rm{EB}})}$$` <br> <center><img src="images/EB_EB0_tb.png" width="600"/></center> <center><small>Table 1. Relative difference of MSE of the EB(0) predictor <br> compared with the EB predictor based on 1000 simulations.</small></center> --- ## Simulation Results `$$\rm{RBMSE}_i = \frac{\hat{\rm{MSE}}_{i} - \rm{MSE}(\hat\zeta_i)}{\rm{MSE}(\hat\zeta_i)}, \rm{CI}_i = \hat\zeta_i\pm1.96\sqrt{\hat{\rm{MSE}}_{i}}$$` <br> <center><img src="images/MSEs.png" width="800"/></center> <small>Table 2. Relative bias and coverage rate of nominal 95% confidence intervals when `\(\rho = 0.9\)` for different MSE estimators based on 1000 simulations and 100 bootstrap samples.</small> ??? Estimating the leading term directly seems to improve the quality of CIs based on "Boot" when B = 100 --- ## Application to CEAP data .left-column[ ### Data Description ] .right-column[ #### Response **RUSLE2**: sheet and rill erosion from cropland tons/yr #### Auxilliary information On a cropland grid at a spatial resolution of 56m **logR** 💦: log-scale county-level Rainfall factor 👈 NRI **logK** 🗻: log-scale erosion factor 👈 Soil Survey **logS** 📐: log-scale slope gradient factor 👈 Soil Survey **crop_type** 🌱: corn, soybean, sprwht or wtrwht 👈 CDL ] --- ## Application to CEAP data .left-column[ ### Data Description ### Parameter Estimates ] .right-column[ Based on the observed information matrix, 95% confidence interval for `\(\rho\)` is `\((0.67, 0.84)\)`. <img src="images/para_est.png" width="400"/> ] --- ## Application to CEAP data .left-column[ ### Data Description ### Parameter Estimates ### EB Predictions ] .right-column[ <img src="images/EB_prediction.png" width="600"/> <small>Figure 1. Cartogram of the EB predicted county means of cropland RUSLE2 in South Dakota. Smaller shrinkage indicates smaller coefficient of variance.</small> ] ??? Eastern South Dakota: more cropland, more samples, more positive response Two counties have no sample, many counties have less than 5 samples, some county at most 30 samples. mean SE around 0.005 --- ## Conclusion - A frequentist approach has been proposed to fit zero-inflated lognormal model with correlated random effects in small area prediction. - When the true correlation deviates far from 0, the EB(0) predictor (Lyu 2018) has moderately larger MSE than the EB predictor (without model mis-specification). - The data analysis of the cropland CEAP RUSLE2 measurements collected in South Dakota shows the model assumptions are reasonable. --- background-image: url(https://media.giphy.com/media/jlcvK6qs6PJtQIoIYW/giphy.gif) background-position: 50% 50% background-size: 50% --- count:false ## Appendix A: CEAP RUSLE2 Residual Analysis <small>Positive part fitted value: marginal 👉 `\(\boldsymbol{x}_{ij}'\hat{\boldsymbol{\beta}}\)`, conditional 👉 `\(\boldsymbol{x}_{ij}'\hat{\boldsymbol{\beta}} + \hat{E}[u_{i} | \boldsymbol{y}_{s_i}^*]\)` + marginal residual (top): `\((\mbox{log}(y_{ij}) - \boldsymbol{x}_{ij}'\hat{\boldsymbol{\beta}})/\sqrt{\hat{\sigma}^{2}_{u}+ \hat{\sigma}^{2}_{e}}\)` + conditional residual (bottom): `\((\mbox{log}(y_{ij}) - \boldsymbol{x}_{ij}'\hat{\boldsymbol{\beta}} - \hat{E}[u_{i} | \boldsymbol{y}_{s_i}^*])/\sqrt{\hat{\sigma}^{2}_{e}}\)`</small> <center><img src="images/qq_residual.png" width="500"/></center> --- count:false ## Appendix A: CEAP RUSLE2 Residual Analysis Binary part: Hosmer-Lemeshow test with `\(\hat{p}_{ij} = E[p_{ij}(b_i) | \boldsymbol{y}_{s_i}^*]\)` <center><img src="images/hl_test.png" width="500"/></center> --- count:false ## Appendix B: Simulation results <center><img src="images/EB_EB0.png" width="550"/></center> <center><small>Relative bias and coverage rate of nominal 95% confidence intervals <br> for the EB and the EB(0) predictor based on 1000 simulations.</small></center>