+ - 0:00:00
Notes for current slide
Notes for next slide

Shiny Application to Iowa DNR MSIM-SGCN Modeling

Xiaodan (Annie) Lyu

Join work with Tyler M. Harms

September 23, 2016

1 / 19

Introduction

  • Period: Oct 2015 - May 2016

  • State Wildlife Grants - Iowa Department of Natural Resources

  • Run predictive models using R package RMark

  • Produce predictive maps using ArcGIS

  • Develop an interactive web application using Shiny

2 / 19

Outline

  • Project overview: data source and objectives

  • Methods: model fit and covariates

  • Model Validation: AUC

  • Results: example of estimates table and predictive maps

  • Demonstrate Shiny application

3 / 19

Data Collection

  • Multiple Species Inventory and Monitoring (MSIM) Program

    • Iowa DNR and Iowa State University
  • Sampling Interval

    • Primary: 2006-2014

    • Secondary: survey occasions (days)

  • Survey Objects

    • 414 SGCN, only 69 SGCN where sufficient data were available

    • Birds, mammals, reptiles, amphibians, odonates and butterflies

4 / 19

Objectives

  • Predict the distribution of species of conservation need

    • robust design occupancy model
  • Create predictive species maps for priority SGCN

    • ArcGIS raster files

    • Shiny interactive web application

  • Prioritize areas of conservation action for SGCN

    • habitat restoration and management
5 / 19

Methods

  • Robust design occupancy model (MacKenzie et al. 2003)

    • package RMark
  • Parameters of Interest

    • probability of occupancy ( ψ )

    • probability of colonization ( γ )

    • probability of extinction ( ϵ )

    • probability of detection ( p )

  • Model types

    • RDOccupEG, RDOccupPE, RDOccupPG, ...
6 / 19

Statistical Model

Pr(Xi)=ϕ0{t=1T=1D(pX,t)ϕt}pX,T

  • pX,t : vector denoting probability of observing the detection history Xi,t in primary period t
  • ϕt : matrix of transition probabilities between states of occupancy from primary period t to t+1 ϕt=[P(Xt+1=1|Xt=1)P(Xt+1=0|Xt=1)P(Xt+1=1|Xt=0)P(Xt+1=0|Xt=0)]=[1ϵtϵtγt1γt],t=1,...,T-1

ϕ0=[ψ11ψ1]

7 / 19

Example

Pr(Xi,1=010)=ψ1(1p1,1)p1,2(1p1,3)Pr(Xi,2=000|Xi,1)=(1ϵ1)j=13(1p2,j)+ϵ1Pr(Xi=010 000)=ϕ0D(p010,1)ϕ1p000,2=[ψ11ψ1][(1p1,1)p1,2(1p1,3)000]   ×[1ϵ1ϵ1γ11γ1][j=13(1p2,j)1]=ψ1(1p1,1)p1,2(1p1,3)[(1ϵ1)j=13(1p2,j)+ϵ1]

8 / 19

Statistical Model (cont'd)

  • Including Covariates θ=exp(Zβ)1+exp(Zβ)

    • θ is the probability of interest

    • Z is the matrix of covariate information

    • β is the vector of logistic model coefficients to be estimated

9 / 19

Covariates

  • Landscape habitat variables [1]

    • Radius of sampled site: 200m, 500m and 1km

    • Land use classification:
      Water, Wetland, Grassland, Woodland and Agriculture

    • Landscape configuration:
      percentage of landscape (PLAND), large patch index (LPI), edge density (ED), patch density (PD) and interspersion-juxtaposition (IJI)

  • Climate variables [2]

    • Wind speed (km/h), Cloud cover (%), Temperature ( oC )

[1] site-specific, modeled on ψ,γ and ϵ

[2] time-varying, modeled on p

10 / 19

Model Selection and Validation

  • Akaike's Information Criterion adjusted for small sizes ( AICc )

    • Models with ΔAICc2 strong support
      (Burnham and Anderson 2002)
  • Area under the receiver operating characteristic curve (AUC)

    • evaluate performance of predicting occupancy

    • training data set: survey years 2006-2012, 2014

    • test data set: survey year 2013 (better representative)

    • package pROC

    • AUC=0.5 random guess

    • AUC=1.0 perfect prediction
      (Jimenez-Valverde 2012)

11 / 19

ROC Curve

12 / 19

Results

Results Summary

Statistics Value/Range
Number of SGCN modeled 64 out of 69
Occupancy Prob ψ^ 0.001(0.0003)~0.995(0.004)
Colonization Prob γ^ 0.0003(0.0001)~0.999(0.00007)
Detection Prob p^ 0.030(0.028)~0.998(0.006)
AUC values 0.426~0.921
Number of AUC>0.5 61 out of 64
13 / 19

Results (Cont'd)

Best Models for Each Specie

Species Model
Red-shouldered Hawk ψ(Wod1KPLND) γ(Ag1KPD)p(Cld)
Yellow-billed Cuckoo ψ(Wod500PLND) γ(Wod1kLPI)p(Wind)
Red-headed Woodpecker ψ(Wod500PLND) γ(Ag500PD)p(Cld)
Eastern Wood-pewee ψ(Wod500PLND) γ(Wod1KPLND)p(Wind)
Acadian Flycatcher ψ(Wod500PLND) γ(Wod500PLND)p(Wind)
Veery ψ(Wod1kED) γ(Ag500LPI)p(Wind)
14 / 19

Results (Cont'd)

AUC and Coefficients Estimates under Best Model

 
15 / 19

Predictive Map

16 / 19

Predictive Map of Range-Restricted Specie

17 / 19

Shiny

  • Shiny by RStudio is a web application framework for R.

  • No HTML, CSS or JavaScript knowledge required to turn your analyses into interactive web applications.

install.packages("shiny")
library("shiny")
runExample("01_hello")
  • ui.R defines the page layout and user interface

  • server.R contains the R code to create any output

  • More information available at Shiny Webpage

18 / 19

About Our Shiny Application

  • Interactive web application to display predictive maps and parameter estimates for each SGCN

  • Easy to download personalized data and maps

  • Available to researchers and managers across Iowa (credentials needed)

  • Hosted by CSSM for 1-2 years

  • The URL for accessing the application is https://dnrswg.cssm.iastate.edu/

19 / 19

Introduction

  • Period: Oct 2015 - May 2016

  • State Wildlife Grants - Iowa Department of Natural Resources

  • Run predictive models using R package RMark

  • Produce predictive maps using ArcGIS

  • Develop an interactive web application using Shiny

2 / 19
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow