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Empirical Small Area Prediction of Sheet and Rill Erosion Using a Zero-inflated Lognormal Model
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e Small area estimation widely used when sample sizes too small for direct estimation. * Response variable y*: sheet and rill erosion, as measured by the Revised Universal Soil Loss * Population element: a CDL pixel classified as cropland within a county in a CEAP state.
e Skewed data w/ zeros: Conservation Effects Assessment Project Sheet and rill erosion Equation (RUSLE2), an update of a model for sheet and rill erosion called USLE. * Incorporating weights: predicted population mean is an average across soil mapunit segments
(RUSLE?2) data in South Dakota contains about 15% zeros. * Possible explanatory variables related to the USLE: weighted by crop acreage.
« Small area predictors and MSE estimators for a lognormal model have closed-form expressions  Comparison of standard errors and example of a soil mapunit overlaid with 2006 CDL:
(Berg and Chandra, 2014). Can we extend this to a zero-inflated model? logR NRI log-scale county-level R-factor s - o o
* How does empirical Bayes compare to the plug-in predictor (Chandra and Chambers, 2016)? logK Soil Survey log-scale K-factor of the soil map unit containing the location
logS Soil Survey log-scale S-factor of the soil map unit containing the location 0.031
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* Visualize an overlay operation required to collect auxiliary information: IVWV ™ v
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F \ Tteys , » EB and plug-in have similar efficiency, unless data extremely sparse.
* Model assessment: » For D = 60, the “one-step” MSE estimator is a reasonable approximation.
L N e AN e 0 » Consider county random effect for both positive and binary part. » For D = 30, the bootstrap MSE estimator: RB 2%~3%, CP 94%~96%.
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o0 » Backward variable selection applied to the fixed effects with a threshold of A(AIC) =0.5. » EB predictor is typically more efficient than direct estimators in terms of MSE in CEAP
(1020] . C e .
- = = = =s M e » For the binary part, the Hosmer-Lemeshow test shows no significant lack of fit. application.
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» Lognormal-logistic model fitting result and standardized residual plot for the positive part:
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 For data analysis purposes, we combined three additional sources besides CEAP: National
Resources Inventory (NRI), National Cooperative Soil Survey and USDA National Agricultural
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of the “one-step” estimator of leading term.
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