IOWA STATE UNIVERSITY **Department of Statistics**

Xiaodan Lyu, Emily Berg, Heike Hofmann

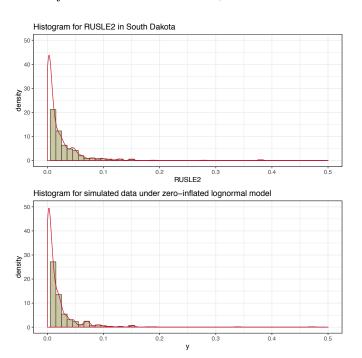
Empirical Small Area Prediction of Sheet and Rill Erosion Using a Zero-inflated Lognormal Model

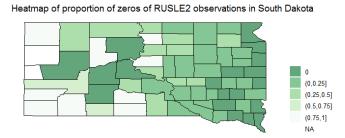
Introduction

- Small area estimation widely used when sample sizes too small for direct estimation.
- Skewed data w/ zeros: Conservation Effects Assessment Project Sheet and rill erosion (RUSLE2) data in South Dakota contains about 15% zeros.
- Small area predictors and MSE estimators for a lognormal model have closed-form expressions (Berg and Chandra, 2014). Can we extend this to a zero-inflated model?
- How does empirical Bayes compare to the plug-in predictor (Chandra and Chambers, 2016)?

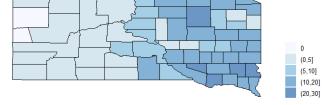
Zero-inflated Lognormal Model

- Let i = 1,...,D index areas, $j = 1,...,N_i$ index units in each area
- Variable of interest: $y_{ij}^* = y_{ij}\delta_{ij} \ge 0$
 - $\delta_{ii} = 0$ if observed value is positive, 0 otherwise.
 - population mean: $\bar{y}_{N_i}^* = \frac{1}{N} \sum_{ij}^{i} y_{ij}^*$.
- Observed data: $\{y_{ii}^*, i = 1, ..., D, j \in s_i\} \cup \{z_{ij} : i = 1, ..., D, j = 1, ..., N_i\}$
- Positive part: $\log(y_{ij}) = \beta_0 + z'_{1ij}\beta_1 + u_i + e_{ij}$
- Binary part: $\delta_{ij} \sim \text{Bernoulli}(p_{ij}), g(p_{ij}) = \alpha_0 + z'_{2ij}\alpha_1 + b_i, g(\cdot)$ is a parametric link function.
- $(u_i, b_i, e_{ij}) \sim N(\mathbf{0}, \operatorname{diag}(\sigma_u^2, \sigma_b^2, \sigma_e^2))$





leatmap of sample sizes of RUSLE2 observations in South Dakota



Small Area Prediction

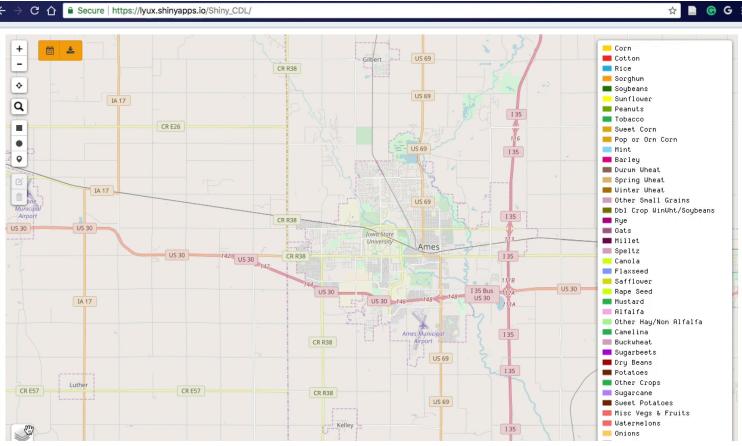
- Use empirical Bayes method to predict population means at small area level.
- For MSE estimator, we propose:
 - a close-formed analytic "one-step" estimator ignoring variance due to parameter estimation.
 - parametric bootstrap estimator incorporating variance due to parameter estimation and bias of the "one-step" estimator of leading term.

Conservation Effects Assessment Project (CEAP)

- Possible explanatory variables related to the USLE:

Variable	Source	Denifit
logR	NRI	log-sca
logK	Soil Survey	log-sca
logS	Soil Survey	log-sca
is.corn	2006 CDL	1 if it's
is.soybean	2006 CDL	1 if it's
is.sprwht	2006 CDL	1 if it's
is.wtrwht	2006 CDL	1 if it's

• Visualize an overlay operation required to collect auxiliary information:



- Model assessment:
 - Consider county random effect for both positive and binary part.
 - Backward variable selection applied to the fixed effects with a threshold of $\Delta(AIC) = 0.5$. • For the binary part, the Hosmer-Lemeshow test shows no significant lack of fit.

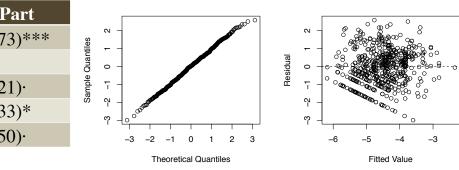
 - Lognormal-logistic model fitting result and standardized residual plot for the positive part:

	Positive Part	Binary P		
logR	2.08 (0.36)***	5.04 (0.7		
logK	0.48 (0.23)*			
logS	0.48 (0.07)***	0.38 (0.2		
is.soybean		0.70 (0.3		
is.sprwht		0.95 (0.50		
*** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$, $p < 0.1$				

References: [1] Berg, E. and Chandra, H., 2014. Small area prediction for a unit-level lognormal model. Computational Statistics & Data Analysis, 78, pp.159-175. [2] Chandra, H. and Chambers, R., 2016. Small area estimation for semicontinuous data. Biometrical Journal, 58(2), pp.303-319.

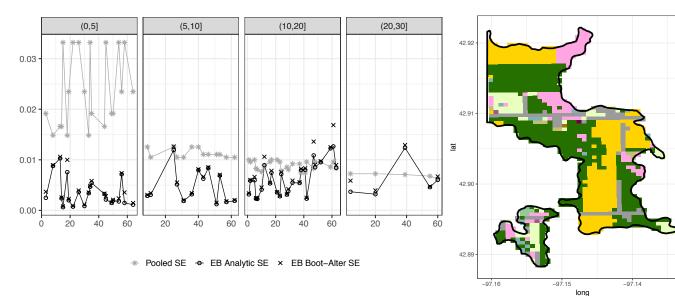
• Response variable y*: sheet and rill erosion, as measured by the Revised Universal Soil Loss Equation (RUSLE2), an update of a model for sheet and rill erosion called USLE.

- le county-level R-factor
- le K-factor of the soil map unit containing the location le S-factor of the soil map unit containing the location
- corn
- soybean
- spring wheat
- winter wheat



CEAP Empirical Bayesian Predictions

- Population element: a CDL pixel classified as cropland within a county in a CEAP state
- Incorporating weights: predicted population mean is an average across soil mapunit segments weighted by crop acreage.
- Comparison of standard errors and example of a soil mapunit overlaid with 2006 CDL:



Simulation Results

Relative MSE of PI/ZI predictor to EB predictor:						
	size = 5		size = 10		size = 20	
Link	PI	ZI	PI	ZI	PI	ZI
logit	1.003	1.445	1.002	1.789	1.000	2.781
probit	1.007	1.362	1.002	1.702	1.000	2.348
cauchit	1.001	1.478	0.999	1.904	1.001	2.796
PI: plug-in predictor, ZI: zero ignored MMSE predictor						

Simulation study on the proposed one-step MS					
	size = 5		size = 10		
Link	RB	СР	RB	СР	

logit	0.0	94.5	-3.6	94.9
probit	4.1	94.6	-3.8	94.8
cauchit	-1.2	94.3	-3.4	94.9
	1. 0	n		1 . 1 .

RB: relative bias, CP: coverage probability

Summary

- We developed EB predictors based on a zero-inflated lognormal for SAE:
 - EB and plug-in have similar efficiency, unless data extremely sparse.
 - \blacktriangleright For D = 60, the "one-step" MSE estimator is a reasonable approximation.
 - ▶ For D = 30, the bootstrap MSE estimator: RB $2\% \sim 3\%$, CP $94\% \sim 96\%$.
 - EB predictor is typically more efficient than direct estimators in terms of MSE in CEAP application
- For data analysis purposes, we combined three additional sources besides CEAP: National Resources Inventory (NRI), National Cooperative Soil Survey and USDA National Agricultural Statistics Service Cropland Data Layer (CDL).
- Future work:
 - Modifying our EB approach to account for the discrete nature of the data.
 - Investigate extensions to more flexible distributional forms, such as a GB2 distribution or quantile regression model.

